Applications of Tolerance-based Granular Methods

Sheela Ramanna

Applied Computer Science Department
University of Winnipeg
Canada
s.ramanna@uwinnipeg.ca

October 5, 2023

On the Occasion of 80th Birthday of Prof. Skowron

Start of a Journey, 1996 -First meetings

- With Prof. Pawlak, New Orleans, USA
- Led to our first visit to Prof. Skowron in 1997 (Warsaw University)

Many more meetings and conferences

- First conference RSCTC 1998 (Poland)
- 2001 RSTGRC Workshop Japan

Tolerance-based GC

- The notion of tolerance is directly related to the idea of closeness between objects with a tolerable level of difference
- Tolerance Rough Sets
 - Soft granules overlapping classes via a tolerance relation and approximation operators
- Fuzzy Rough Sets
 - \bullet Soft granules overlapping classes via a fuzzy $\mathcal{T}\text{-equivalence}$ relation and approximation operators
- Near sets
 - Soft granules overlapping classes via a tolerance relation

Origins and Motivation

Fuzzy Sets, 1965

 A granule is a clump of objects (points), in the universe of discourse, drawn together by indistinguishability, similarity, proximity, or functionality (Zadeh, 1997)

 Soft computing methodology based on approximations of sets.

Near Sets, 2007

 Soft computing methodology, derives its origins from rough set theory and descriptive proximity (from sets to families of sets)

Resemblance, Perception and Tolerance

J.H. Poincaré (1894-1902)

- Similarity (resemblance) in sets of sensations
- Perception Objects in the physical world with characteristics observable to the senses

Frigyes Riesz

- Proximity or nearness of pairs of sets
- Intl. Congress Mathematicians 1908

Tolerance spaces and visual perception

 Zeeman E. C.: 'The Topology of the Brain and Visual Perception', in The Topology of 3-manifolds, Prentice Hall, Englewood, N.J., 1962, pp. 240–248.

Specific Applications - Inspired by the Prof. Skowron and colleagues

- Named Entity Recognition (NER)
 - Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inf. 27(2,3) (August 1996) 245–253
- Non topic-based classification (Sentiment Analysis)
 - Polkowski, L., Skowron, A., Zytkow, J.: Tolerance Based Rough Sets. In: Lin, T.Y., Wildberger, M. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, San Diego, Simulation Councils Inc. (1994) 55–58

Categorizing Linguistic Entities

Started in 2013 with datasets from NELL Corpora (CMU)

- ClueWeb09 (already preprocessed all-pairs data)
- ClueWeb12 (extracted entities from 733,019,372 English web pages)

with Tolerance Rough Sets and Fuzzy Rough Sets

BioNER in 2021

- Annotating biomedical entities on CORD-19 Open dataset (29,000 articles)
- Extracted, 6,222,196 contextual patterns, 465,250 entities, Co-occurrence Matrix (2.76GB)

with Tolerance Rough Sets

Figure: Common Entities

Figure: Biomedical Entities

Linguistic Patterns - common entity types

Fact

Ice Hockey is popular in Canada

Unary Relations

Sport(Ice Hockey), Country(Canada)

Binary Relations

Popular-Sport-Of(Canada, Ice Hockey)

contextual extraction patterns

co-occurrence statistics

```
e.g. f("Ice Hockey", "\_league") = n
e.g. f("Ice Hockey", "Canada", "\_is popular in _") = n
```


TRS Model for Linguistic Entities

Novel TRS model that permits

- Representation of <u>unary</u>, <u>binary</u> relations and <u>contextual</u> patterns
- Computation of tolerance classes of contextual patterns via co-occurrences
- Calculation Lower and Upper Approximations

Semi-Supervised or weakly supervised algorithms

- Tolerant Pattern Learner: TPL 1.0 and 2.0, Fuzzy Rough Set Pattern Learner (FRL)
- Similarity scoring based on upper and lower approximations
- Benchmarked against CBS and CPL Algorithms (from NELL)

Concept Drift Issues

16 top-ranked instances by TPL 1.0

	Iteration 1		Iteration 10				
Phys'Terms	Soc'politics	Vegetables	Phys'Terms	Soc'politics	Vegetables		
inertia	socialism	zucchini	density	humanism	zucchini		
acceleration	democracy	spinach	conductivity	pluralism	cabbage		
gravity	dictatorship	cucumber	intensity	federalism	kale		
buoyancy	monarchy	tomato	viscosity	interna'lism	celery		
velocity	independence	broccoli	permeability	nationalism	cauliflower		
momentum	justice	lettuce	velocity	rationality	eggplant		
magnetism	equality	celery	brightness	liberalism	carrots		
resonance	pluralism	cabbage	attenuation	secularism	asparagus		
curvature	interna'lism	kale	luminosity	individualism	tomatoes		
electromagnet.	federalism	cauliflower	reflectance	democracy	spinach		
density	secularism	asparagus	sensitivity	environ'ism	squash		
elasticity	liberalism	carrots	amplitude	morality	cucumber		
surface tension	hegemony	tomatoes	thickness	pragmatism	melon		
polarization	self-determ.	avocado	frequency	spirituality	chicken		
vibration	unification	eggplant	water cont.	regionalism	tofu		
entropy	capitalism	carrot	salinity	subjectivity	shrimp		

TRS Model - Unary Relations

Noun-Context Tolerance Model*

$$\mathcal{A} = (\mathcal{C}, \mathcal{N}, \mathit{I}, \omega, \nu)$$

- ullet ${\cal N}$ and ${\cal C}$ are the universes
- $I = I_{\theta}(c_i) = \{c_j : \omega(N(c_i), N(c_j)) \ge \theta\}$ describes tolerance classes for contexts
- $\omega(A, B) = \frac{2|A \cap B|}{|A| + |B|}$ is the overlap index
- $\nu(X, Y) = \frac{|X \cap Y|}{|X|}$ measures degree of inclusion
- $\bullet \ \mathcal{L}_{\mathcal{A}}(n_i) = \{c_j \in \mathcal{C} : \nu(I_{\theta}(c_j), C(n_i)) = 1\}$
- $\bullet \ \mathcal{U}_{\mathcal{A}}(n_i) = \{c_j \in \mathcal{C} : \nu(I_{\theta}(c_j), C(n_i)) > 0\}$
- *C. Sengoz and S. Ramanna. A Semi-supervised Learning Algorithm for Web Information Extraction with Tolerance Rough Sets. Proc. of Active Media Technology, 2014 Web Intelligence Congress, LNCS 8610, 1-10, 2014
- Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inf. 27(2,3), 1996
- S. Kawasaki, N.B. Nguyen, and T. Ho. Hierarchical Document Clustering Based on Tolerance Rough Set Model, Proc. of the 4th European Conf. on Principles of Data Mining and Knowledge Discovery, 458–463, 2000

Similarity Calculation

$$micro(n_i, n_j) = \omega(C(n_i), C(n_j))\alpha + \omega(\mathcal{U}_{\mathcal{A}}(n_i), C(n_j))\beta + \omega(\mathcal{L}_{\mathcal{A}}(n_i), C(n_j))\gamma$$

Figure: Zones of Approximation induced by trusted entity (noun (n_i)) and candidate entity (noun (n_j)) and contexts $C(n_i)$ and $C(n_i)$ respectively for a certain category.

TPL Algorithm - Annotating Nouns

3

4

5

6

7

8

9

10

Algorithm 1: Tolerant Pattern Learner for Entities

```
Input: An ontology O defining categories and a small set of seed
            examples; a large corpus U
  Output: Trusted instances for each category
1 for r = 1 \rightarrow \infty do
       for each category cat do
            for each new trusted noun phrase n_i of cat do
                 Calculate the approximations \mathcal{U}_{\mathcal{A}}(n_i) and \mathcal{L}_{\mathcal{A}}(n_i);
                 for each candidate noun phrase n_i do
                      Calculate micro(n_i, n_i);
            for each candidate noun phrase n_i do
                 macro_{cat}(n_j) = \sum micro(n_i, n_j);
            Rank instances by macro_{cat}/|cat|;
            Promote top instances as trusted;
```

TRS Model - Binary Relations

- $\mathcal{R} = \{r_1, r_2, ..., r_Q\}$ is the universe of relational (binary) contexts.
- $\mathcal{T} = \{t_{ij} = (n_i, n_j) \in \mathcal{N}^2 : \exists r_k \in \mathcal{R} \mid f_{\mathcal{T}}(t_{ij}, r_k) > 0\}$ is the universe of co-occurring noun phrase pairs (i.e. tuples)

Then, we define the cross-mapping functions:

- $R: \mathcal{T} \to \mathbb{P}(\mathcal{R})$ maps each noun phrase pair to its set of co-occurring relational contexts: $R(t_{ij}) = \{r_k : f_{\mathcal{T}}(t_{ij}, r_k) > 0\}$
- $T: \mathcal{R} \to \mathbb{P}(\mathcal{T})$ maps each relational context to its set of co-occurring noun phrase pairs: $T(r_k) = \{t_{ij} : f_{\mathcal{T}}(t_{ij}, r_k) > 0\}$

Approximation Operators

Relation-Context Tolerance Model*

$$\mathcal{A} = (\mathcal{R}, \mathcal{T}, I, \omega, \nu)$$

- \bullet $\, {\cal T}$ and ${\cal R}$ are the universes defined previously
- $I = I_{\theta}(r_i) = \{r_j : \omega(T(r_i), T(r_j)) \ge \theta\}$ describes tolerance classes for contexts
- $\omega(A,B) = \frac{2|A \cap B|}{|A| + |B|}$ is the overlap index
- $\nu(X, Y) = \frac{|X \cap Y|}{|X|}$ measures degree of inclusion
- $\bullet \ \mathcal{L}_{\mathcal{A}}(t_i) = \{r_j \in \mathcal{R} : \nu(I_{\theta}(r_j), R(t_i)) = 1\}$
- $\mathcal{U}_{\mathcal{A}}(t_i) = \{r_j \in \mathcal{R} : \nu(I_{\theta}(r_j), R(t_i)) > 0\}$
- *Sengoz, C., Ramanna, S., Learning Relational Facts From the Web: A Tolerance Rough Set Approach, Pattern Recognition Letters, Elsevier, 2015, 67(P2):130-137.

Dataset: Unary Relations

- Original source is ClueWeb09 [1]. (50+ million web documents.)
- We used the all-pairs treatment [2] by Andy Carlson.
- Sub-sampled 70,000 noun phrases and 60,000 contexts in the form of a matrix.
- Implemented in MATLAB®
- 1 Jamie Callan and Mark Hoy. Clueweb09 Data Set, 2009
- 2 Carlson, A.: All-pairs data set (2010)
- 3 A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka, Jr., and T. M. Mitchell. Coupled Semi-supervised Learning for Information Extraction. In *Proceedings of the Third ACM International Conference on Web Search and Data Mining*, pages 101–110, 2010
- 4 S. Verma and E. R. Hruschka, Jr. Coupled Bayesian Sets Algorithm for Semi-supervised Learning and Information Extraction. In ECML PKDD Part II LNCS 7524, pages 307–322, 2012

TPL 1.0 Results: Precision@30 for Unary Relations

Categories	Iterati	on 5	Iteratio	on 10
	TPL	CBS	TPL	CBS
Company	100%	100%	100%	100%
Disease	100%	100%	100%	100%
KitchenItem	100%	94%	100%	94%
Person	100%	100%	100%	100%
PhysicsTerm	93%	100%	90%	100%
Plant	100%	100%	97%	100%
Profession	100%	100%	100%	87%
Sociopolitics	100%	48%	100%	34%
Sport	97%	97%	100%	100%
Website	90%	94%	90%	90%
Vegetable	93%	83%	63%	48%
Average	97.5%	92%	94.5%	87%

Sengoz, C., Ramanna, S.: A semi-supervised learning algorithm for web information extraction with tolerance rough sets. In: Proc. of Web Intelligence Congress, Active Media Technology 2014, LNCS 8610. Springer, 1-10

Dataset: Binary Relations

Experimental Setup

- Sub-sampled 13 million noun phrase pairs and 11 million contexts in form of a matrix.
- Implemented in C++.
- 10 Categories, 5 Seeds per Category, 10 Iterations

Evaluation

- Ranking-based Precision@30: In any iteration, after noun phrases are scored and ranked for a relation, the percentage of the correct pairs in the set of the top 30-ranked pairs is calculated.
- Promotion-based Precision@30: From the set of all promoted pairs for a given relation, we sampled 30 pairs to be evaluated and we calculated the percentage of the correct pairs within that set.

TPL 1.0 Results: Precision@30 for Binary Relations

Evaluation	Rar	nking-b	ased	Promotion-based				
		TPL			TPL			
Iterations	1	5	10	1	5	10	10	
Categories								
Athlete-Team	100	90	87	100	96	87	100	
CEO-Company	100	100	100	100	100	100	100	
City-Country	100	100	100	100	100	100	93	
City-State	100	100	100	100	100	100	100	
Coach-Team	93	93	93	100	100	93	100	
Company-City	83	90	93	40	84	97	50	
Stadium-City	97	93	80	80	92	70	100	
State-Capital	100	97	73	100	100	63	60	
State-Country	100	100	100	100	100	100	97	
Team-vs-Team	93	83	80	100	84	80	100	
Average	96.6	94.6	90.6	92.0	95.6	89.0	90.0	

Fuzzy Rough Pattern Learner (FRL)*

Motivation

- Fuzzy Rough Sets permit overlapping or soft similarity classes
- Gain insights into the strengths and weakness of integration of fuzzy and rough sets for categorization of linguistic entities
- Previously applied to query expansion problem for document retrieval**
- Study the effects of concept drift by using the same dataset, iterations and evaluation measures of TPL, CBS and CPL

Solution

- Instead of a crisp co-occurrence matrix, create a fuzzy (graded) co-occurrence matrix
- 2 Approximate fuzzy contextual patterns (with rough set operators)
- 3 Create a new scoring mechanism

Knowledge and Information Systems Journal , Springer, 2019, Volume. 61, Issue 3, 1695-1713.

**M. De Cock and C. Cornelis. Fuzzy rough set based web query expansion. In Proceedings of Rough Sets and Soft Computing in Intelligent Agent and Web Technology, pages 9–16, 2005.

^{*}Bharadwaj, A and Ramanna, S. Categorizing Relational Facts from the Web with Fuzzy Rough Sets,

Fuzzyfying co-occurrence information: Binary relations

first step is to normalize the co-occurrence statistics.

$$\vartheta(h_{ij}, r_k) = \frac{f_R(h_{ij}, r_k)}{f_R(h_{ij}, r_k), \forall k: 1...Q}$$

second step is to fuzzifying the normalized data.

$$S(\vartheta; \alpha, \beta) = \begin{cases} 1 & \text{if } \vartheta \geq \beta \\ \frac{\vartheta - \alpha}{\beta - \alpha} & \text{if } 0.005 \leq \vartheta < \beta \\ 0, & \text{otherwise} \end{cases}$$

$$\alpha = 0.001$$
 and $\beta = 0.02$

Lower And Upper Approximations: Binary Relations

$$I = (\mathcal{H}, \mathcal{R}, CO_F)$$

- ullet ${\cal H}$ denotes the universe of relations.
- ullet ${\cal R}$ represents the co-occurring contextual patterns.
- CO_F is a fuzzy set in $\mathcal{H} \times \mathcal{R}$.
- The upper and lower approximations of the fuzzy set H_F in I is denoted by H_F ↑ CO_F and H_F ↓ CO_F
- $\mathcal{H}_{\mathcal{F}} \uparrow CO_F = \sup_{h_{ij} \in \mathcal{H}, h_{xy} \in \mathcal{TR}} (CO_F(R(h_{ij}), h_{xy}), \mathcal{H}_{\mathcal{F}}(h_{xy}) : CO_{\mathcal{F}}(h_{ij}) \ge CO_{\mathcal{F}}(h_{xy}))$
- $\mathcal{H}_{\mathcal{F}} \downarrow CO_F = \inf_{h_{ij} \in \mathcal{H}, h_{xy} \in \mathcal{TR}} (CO_F(R(h_{ij}), h_{xy}), \mathcal{H}_{\mathcal{F}}(h_{xy}) : ((h_{ij}, h_{xy}) | R(h_{xy}) \cap R(h_{ij}) \neq \emptyset)))$

Tight Upper Approximation and Similarity Score

Tight Upper Approximation

$$CO_F \downarrow \uparrow \mathcal{H}_F(h_{ij}) = CO_F \downarrow (CO_F \uparrow \mathcal{H}_F(h_{ij}))$$

Similarity Score

$$micro(h_{ij}) = \omega_1(\mathcal{H}_{\mathcal{F}} \uparrow CO_F) + \omega_2(\mathcal{H}_{\mathcal{F}} \downarrow CO_F))$$

 ω_1 and ω_2 are application dependent.

Fuzzy Rough Learner Algorithm: Binary Relations

```
Input: An ontology O defining categories; a large corpus \mathcal{H}, CO
              co-occurrence matrix, a small set of trusted relations TR
   Output: Trusted instances h_{xy} for TR', where TR' is a set of all new
              promoted trusted noun pair(relation) phrases
 1 for r=1 \rightarrow \text{end of file do}
       for each category cat do
 2
 3
            for each new trusted relations h_{xy} belonging to cat do
                for each candidate relation h_{ii} do
 4
                    Calculate Fuzzy Relation \mathcal{CO}_{\mathcal{F}};
                    Calculate Upper Approximation U_{\mathcal{H}_F}(h_{ij});
 6
                    Calculate score \omega_1:
 7
                    for each candidate relation h_{ii} do
 8
                         Calculate Lower Approximation L_{\mathcal{H}_{\mathcal{F}}}(h_{ij});
 9
                         Calculate score \omega_2;
10
                Calculate micro_{cat}(h_{ii});
11
            Sort trusted instances h_{xy} by micro_{cat}/|cat|;
12
            Promote top trusted instances, such that TR' = TR \cup \{h_{xy}\};
13
```

FRL Results: Precision@30 for Unary Relations

Categories	Iteration 5			Iteration 10		
	TPL	CBS	FRL	TPL	CBS	FRL
Company	100	100	100	100	100	100
Disease	100	100	100	100	100	100
KitchenItem	100	94	97	100	94	73
Person	100	100	100	100	100	100
PhysicsTerm	93	100	67	90	100	77
Plant	100	100	77	97	100	100
Profession	100	100	100	100	87	100
Sociopolitics	100	48	93	100	34	87
Sport	97	97	100	100	100	100
Website	90	94	97	90	90	93
Vegetable	93	83	83	63	48	47
Average	97.5	92	92	94.5	87	89

Bharadwaj, A., Ramanna, S.: Fuzzy rough set-based unstructured text categorization. Proceedings of 30th Canadian Artificial Intelligence Conference, LNAI 10233, pp. 335-340, 2017

FRL promotion-based results: Precision@30 for Binary Relations

Categories	TPL				CPL		
	1	5	10	1	5	10	10
Athlete Team	100	96	87	100	100	83	100
CEO Company	100	100	100	100	100	100	100
City Country	100	100	100	100	93	96	93
City State	100	100	100	100	100	100	100
Coach Team	100	100	93	100	100	100	100
Company City	40	84	97	100	100	100	50
Stadium City	80	92	70	80	92	90	100
State Capital	100	100	63	100	88	43	60
State Country	100	100	100	100	100	100	97
Team vs Team	100	84	80	100	96	100	100
Average	92.0	95.6	89.0	98.0	96.6	91.2	90.0

FRL ranking-based results: Precision@30 for Binary Relations

Categories	TPL			FRL			
	Iter. 1	Iter. 5	Iter.10	Iter. 1	Iter. 5	Iter. 10	
Athlete Team	100	90	87	97	100	97	
CEO Company	100	100	100	100	100	100	
City Country	100	100	100	93	100	100	
City State	100	100	100	97	100	100	
Coach Team	93	93	93	100	100	100	
Company City	83	90	93	97	100	100	
Stadium City	97	93	80	93	70	93	
State Capital	100	97	73	93	83	77	
State Country	100	100	100	90	100	100	
Team vs Team	93	83	80	100	100	100	
Average	96.6	94.6	90.6	96	95.3	96.7	

Bharadwaj, A., Ramanna, S. Categorizing Relational Facts from the Web with Fuzzy Rough Sets, Knowledge and Information Systems Journal, Springer, 2019, Volume. 61, Issue 3, 1695-1713.

^{*}Mutual Exclusion Constraints were applied with FRL.

TPL 2.0- Next Version*

Motivation

- Explore Scalability of TPL 1.0
- Handling of concept drift in a larger dataset
- Question: Do we need to define additional constraints?

Solution

- Extract categorical information from a large noisy dataset of crawled web pages (733,019,372 English web pages of ClueWeb2012- 6TB)
- Prepare contextual co-occurrence matrix
- Extend the number of iterations

Patterns Journal, Cell Press, 2020, https://doi.org/10.1016/j.patter.2020.100053

^{*}Moghaddam, H and Ramanna, S., Harvesting Patterns from Textual Web Sources with Tolerance Rough Sets,

Results with TPL 2.0

Categories	Iteration 5				Iteration 10			
	TPL 2.0	TPL 1.0	CBS	FRL	TPL 2.0	TPL 1.0	CBS	FRL
Company	100	100	100	100	100	100	100	100
Disease	100	100	100	100	100	100	100	100
KitchenItem	97	100	94	97	97	100	94	73
Person	100	100	100	100	100	100	100	100
PhysicsTerm	97	93	100	67	97	90	100	77
Plant	94	100	100	77	97	97	100	100
Profession	100	100	100	100	100	100	87	100
Sociopolitics	94	100	47	93	97	100	34	87
Sport	100	97	97	100	100	100	100	100
Website	97	90	94	97	97	90	90	93
Vegetable	74	93	83	83	90	63	48	47
Average	95.7	97.5	92	92	97.7	94.5	87	89

130,536 noun phrases and 118,648 contextual patterns. TPL 2.0 results for iteration 20 was 96.2%

Summary of our experiments

CPL	CBS	TPL 1.0	FRL	TPL 2.0
Core component of NELL	Based on Bayesian Sets	Based on Tolerance Rough Sets	Based on Fuzzy Rough Sets	Based on Tolerance Rough Sets
Corpus of 200- million webpages	Subset from ClueWeb09	Subset from ClueWeb09	Subset from ClueWeb09	Subset from ClueWeb12 (larger data set)
Concept drift- three constraints	Mutual Exclusion constraint	No constraints	Mutual Exclusion constraint	No constraints
Learning Relational (binary) Facts	Learning Relational (unary) Facts	Learning Relational (unary and binary) Facts	Learning Relational (unary and binary) Facts	Learning Relational (unary) Facts
	Outperforms CBS (10 th iteration)	Outperforms CBS and CPL (10 th iteration)	Outperforms TPL 1.0 on relational (binary) and comparable with unary facts	Outperforms TPL 1.0, FRL, CBS and explores concept drift (20 th iteration)

Ramanna, S., Peters, J., Sengoz, C.: Application of tolerance rough sets in structured and unstructured text categorization: A survey. In: G.Wang et al. (eds.), Thriving Rough Sets,

Studies in Computational Intelligence, 708, Springer, pp. 119-173 (2017)

TNS Model for Non-topic classification

Tolerance Near Sets-based Classifier that leverages

- Pre-trained birectional transformer encoders
- Efficient feature vector embeddings from textual units
- Sentiment Classification and News Categorization Tasks

Supervised learning algorithm

- Tolerance Classes are induced directly from feature vectors
- Similarity scoring based on distance function and a predefined tolerance level
- First applied to Solar Flare Images*

System Based on Tolerance Near Sets in a GPU-CUDA Framework, *Knowledge-based Systems Journal*, Elsevier,

^{*}G. Poli, E.Llapa, J.R. Cecatto, J.H. Saito, J.F. Peters, S. Ramanna, M.C. Nicoletti: Solar Flare Detection

Preliminaries*

Definition

Text-based Tolerance Relation $\cong_{\mathcal{T},\epsilon}$

Let $\langle T, F \rangle$ be a universe of nonempty set of objects T and F be the feature set. Let $T \subseteq F$ where T represents textual features. A tolerance space $\langle T, \cong_{T,\epsilon} \rangle$ is defined as:

$$\cong_{\mathcal{T},\epsilon} = \{(t_i, t_j) \in \mathcal{T} \times \mathcal{T} : dist(t_i, t_j) \leq \varepsilon\}$$
 (1)

where dist is the cosine distance given as follows:

$$dist(t_i, t_j) = 1 - \frac{\phi(t_i).\phi(t_j)}{\|\phi(t_i)\| \|\phi(t_j)\|}$$
(2)

The tolerance relation $\cong_{\mathcal{T},\epsilon}$ induces a tolerance class \mathcal{TC} where ε is a user-defined tolerance level.

 $Tolerance-Based\ Soft\ Computing\ Method,\ Algorithms,\ MDPI\ 2022,\ https://www.mdpi.com/1999-4893/\underline{15}/8/26\underline{70}/2002,\ https://www.mdpi.com/1999-4893/\underline{15}/8/2002,\ https://www.m$

^{*}Vrushang Patel, Sheela Ramanna, Ketan Kotecha, and Rahee Walambe, Short Text Classification with

TSC - Training Phase to generate representative vectors

```
Input: TV = \{TV_1, \dots, TV_M\}, // Transformer Vectors
               \varepsilon > 0, // Tolerance level parameter
    Output: (NT, \{(R_1, TextCat_1), \dots, (R_{NT}, TextCat_{NT})\})
               NT is the size of the Tolerance class set
 1 for p \leftarrow 1 to M do
        for q \leftarrow p + 1 to M do
            computeCosineDist(TV_p, TV_q, Cos_{pq})
 4 for i \leftarrow 1 to M do
        for i \leftarrow i + 1 to M do
             ObjectPairs \leftarrow generatetolerantpairs(Cos<sub>ii</sub>, \varepsilon);
 6
              N_i \leftarrow \text{createobjectneighbour}(\text{ObjectPairs}, i, TV);
            for all, o_1, o_2 \in N_i do
 7
                 if o_1, o_2 \in ObjectPairs then
                    TC_i \leftarrow \{o_2\};
        T \leftarrow T \cup \{TC_i\};
10
        TextCat_i \leftarrow computeMajorityPol(T_i); //
11
12 NT \leftarrow |T|; // Number of tolerance classes in T
     \{(R_1, TextCat_1), \dots, (R_{NT}, TextCat_{NT})\} \leftarrow
     GenerateClassRepresentative(NT);
```

TSC - Classification Phase

assigns classes to the test set vector

Algorithm 2: TSC Classification Phase: Assigning Sentiment Classes

```
Input : \varepsilon > 0, // Tolerance level parameter , NT // Size of the Tolerance class set T , TV' = \{TV_1, \ldots, TV_M\}, // Transformer Vectors for testing  \{(R_1, TextCat_1), \ldots, (R_{NT}, TextCat_{NT})\} \ // Representative class vectors generated in the training phase and their associated classes  \mathbf{Output} \colon (TV' = \{(TV_1, TextCat_1), \ldots, (TV_M, TextCat_M)\}) \ // Transformer Vectors with assigned categories  \mathbf{1} \ \mathbf{for} \ i \leftarrow \mathbf{1} \ \mathbf{to} \ M \ \mathbf{do}   \mathbf{2} \ | \ \mathbf{for} \ j \leftarrow i + 1 \ \mathbf{to} \ NT \ \mathbf{do}   \mathbf{3} \ | \ | \ \mathbf{computeCosineDist}(TV_i, R_j, \mathbf{Cos}_{ij});   \mathbf{4} \ TV' \leftarrow \mathsf{DetermineClass}(\mathit{Cos}_{ij}) \ // \mathsf{Computes min.} \ \mathsf{distance} \ \mathsf{and}
```

Vrushang Patel and Sheela Ramanna, Tolerance-based short text Sentiment Classifier, Proceedings of International

Joint Rough Sets Conference 2021, Bratislava, Slovakia, LNAI 12872, pp 259-265.

Dataset: Sentiment Classification

Dataset	Туре	Size	Positive	Negative	Neutral	Irrelevant
Covid-Sentiment	Train	7000	22.02%	30.35%	47.63%	-
Covid-Sentiment	Test	1003	23.53%	37.29%	39.18%	-
U.S. Airline Sentiment	Train	12000	16.79%	61.02%	22.19%	-
0.5. Airiille Sentiment	Test	1000	13%	67.5%	19.5%	-
IMDB Movie Review	Train	20000	50.27%	49.73%	-	-
INIDO MONE Keview	Test	2000	50.35%	49.65%	-	-
SST-2	Train	15000	55.37%	44.63%	-	-
331-2	Test	1500	55.53%	44.47%	-	-
Sentiment140	Train	15000	50%	50%	-	-
Sentiment140	Test	1000	50%	50%	-	-
SemEval 2017	Train	17001	40.67%	15%	44.33%	-
SelliLval 2017	Test	3546	41.54%	15.76%	42.70%	-
Sanders corpus	Train	4059	10.24%	11.38%	45.26%	33.12%
Sanders Corpus	Test	1015	9.85%	10.54%	47.68%	31.93%
UCI Sentence	Train	2700	49.11%	50.89	-	-
OCI Sentence	Test	300	58%	42%	-	-
Dataset	Туре	Size	World	Sports	Business	Science
AG-News	Train	12000	3000	3000	3000	3000
AG-News	Test	1150	300	250	300	300

TSC Results - Weighted F1-score

Table: SBERT vector-based weighted F1-score (rounded) results for six classifiers. Best results are in bold-face.

Dataset	TSC-mean	RF	ME	SVM	SGD	LGBM
Covid-Sentiment (3)	55	44	57	57	57	56
U.S. Airline (3)	77	77	77	77	75	77
IMDB (2B)	76	69	73	73	72	72
SST-2 (2B)	85	85	85	86	85	85
Sentiment140 (2)	70	68	72	72	66	70
SemEval (3) 2017	60	54	64	63	63	60
Sanders corpus (4)	69	70	76	74	76	75
UCI Sentence (2B)	89	84	86	87	87	83
AG-News (4B)	82	79	88	81	88	83
20-Newsgroups (B)	66	41	58	52	52	53

Issues

- PRC-AUC, ROC-AUC and Weighted F1 scores were examined
- Balanced Tolerance Classes
- Number of Sentiment Categories
- Length of words (short and long)
- Quality of Vector Embeddings

Impact of different Embeddings on TSC

Assessing Impact of the following

- DistilBERT, MiniLM, and Word2Vec Word Embeddings
- Examining labelling of Prototype Vectors
- Examining imbalanced tolerance classes

TSC 2.0* Supervised learning algorithm

- Includes a tie-breaking and variance classification method
- Includes feature vectors drawn from combination of embedding methods

^{*}T.Hegde, K. S. Sanjay, S. M. Thomas, R. Kambhammettu, A.Kumar M, S. Ramanna, Impact of Vector Embeddings on the Performance of Tolerance Near Sets-based Sentiment Classifier for Text Classification, Proc. of KES, 2023 [to appear].

Observations - F1 Scores

- DistilBERT was the most effective embedding for IMDb, US
 Airline and Sentiment 140 datasets
- DistilBERT + MiniLM with tie-breaking condition gave the best score for AG news dataset
- Adding additional word embedding did not work for most datasets
- Overall TSC 2.0 has better F1-scores than TSC 1.0
 - IMDB: TSC 2.0 (79.8%) vs. TSC 1.0 (76%)
 - US Airline: TSC 2.0 (78.5%) vs. TSC 1.0 (77%)
 - Sentiment 140 : TSC 2.0 (71%) vs. TSC 1.0 (70%)
 - AG news: TSC 2.0 (88%) vs. TSC 1.0 (82%) 4 classes

Tolerance-based Multimodal Sentiment Classifier

Multimodal Information Processing**

Figure: Case Study- Multimodal Co-learning of sensor fusion in Gas Detection*

**Anil Rahate, Rahee Walambe, Sheela Ramanna, Ketan Kotecha, Multimodal Co-learning: Challenges, applications with datasets, recent advances and future directions, <u>Information Fusion Journal</u>, Elsevier, Volume 81, 2022, Pages 203-239,ISSN 1566-2535, https://doi.org/10.1016/j.inffus.2021.12.003

*Anil Rahate, Shruti Mandaokar, Pulkit Chandel, Rahee Walambe, Sheela Ramanna, Ketan Kotecha, Employing Multimodal Co-learning to Evaluate the Robustness of Sensor Fusion for Industry 5.0 Tasks,

Soft Computing Journal, Springer, volume 27, pages,4139–4155 (2023)

Concluding Remarks

- Novel models for representing Linguistic Entities
- Tolerance-based framework for semi-supervised machine learning
- Demonstrated efficacy with benchmark datasets (ClueWeb) and algorithms (CPL and CBS - NELL)
- Acknowledgments
 - Natural Sciences and Engineering Council of Canada (NSERC)
 Discovery Grants Program
 - Colleagues: Prof. Anand Kumar, National Institute of Technology (NIT) Karnataka, India
 - Prof. Ketan Kotecha and Prof. Rahee Walambe, SIT, Pune, India
 - Graduate Students: Cenker Sengoz, Aditya Bharadwaj, Hoora Rezai Moghaddam, Vrushang Patel (Msc)
 - Anil Rahate (PhD)- SIT Pune
 - Undergraduate Students: NIT, UWinnipeg, IIT-Kharagpur

